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Implementation details of the coupled
QMR algorithm

Roland W. Freund and Noél M. Nachtigal

Abstract. The original quasi-minimal residual method (QMR) relies on the three-
term look-ahead Lanczos process to gemerate basis vectors for the underlying Krylov
subspaces. However, empirical observations indicate that, in finite precision arithmetic,
three-term vector recurrences are less robust than mathematically equivalent coupled two-
term recurrences. Therefore, we recently proposed a new implementation of the QMR
method based on a coupled two-term look-ahead Lanczos procedure. In this paper, we
describe implementation details of this coupled QMR algorithm, and we present results
of numerical experiments.

1 Introduction

Recently, we proposed a new Krylov subspace iteration, the quasi-minimal residual
algorithm (QMR) [5], for solving general nonsingular non-Hermitian systems of
linear equations

Az =b. (1.1)

The QMR method has two main ingredients: the look-ahead Lanczos process, and
a quasi-minimal residual condition. The look-ahead Lanczos algorithm is used to
generate—with low work and storage requirements—basis vectors for the under-
lying Krylov subspaces. Furthermore, look-ahead techniques are used to avoid
possible breakdowns in the classical Lanczos algorithm [7], except for so-called
incurable breakdowns. Once the Lanczos basis is constructed, the quasi-minimal
residual property is used to select the QMR iterates from the Krylov subspaces. As
was shown in [5], the QMR iterates are always well defined, and the quasi-minimal
residual condition leads to a smooth and nearly monotone convergence behavior.
In addition, thanks to the quasi-minimal residual property, it is possible to prove
convergence results for the QMR algorithm. The result is a method with several
desirable numerical and theoretical properties.

In the original QMR algorithm, the look-ahead Lanczos method used gener-
ates the basis vectors for the Krylov subspaces by means of three-term recurrences.
It has been observed that, in finite precision arithmetic, vector iterations based
on three-term recursions are usually less robust than mathematically equivalent
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coupled two-term vector recurrences. Therefore, in [6], we proposed a new im-
plementation of the QMR algorithm, based on a coupled two-term recurrence
formulation of the Lanczos algorithm. Together with the derivation, we discussed
in [6] the properties of the new implementation, and presented numerical results
showing that the new method is more robust than the original QMR algorithm.
In this paper, we discuss in more detail the implementation of the new algorithm;
in particular, we focus on the implementation of the coupled two-term version of
the look-ahead Lanczos algorithm. We also give several new numerical examples.

The outline of the paper is as follows. In Section 2, we recall the three-term
look-ahead Lanczos process that was proposed in {3]. Then, in Section 3, we review
the coupled two-term look-ahead Lanczos algorithm that was proposed in [6], and
in Section 4 we give implementation details of the new algorithm. In Section 5, we
briefly recall how the QMR approach can be combined with the coupled Lanczos
algorithm to obtain a new implementation of the QMR method, and in Section 6,
we report results of numerical experiments with this new QMR algorithm. Finally,
in Section 7, we make some concluding remarks.

Throughout the paper, all vectors and matrices are allowed to have real or
complex entries. As usual, MT = [mkj] denotes the transpose of the matrix
M = [mj,]. We use 0,,,(M) for the smallest singular value of M, while the

vector norm ||z|| := VzHz is always the Euclidean norm. We denote by
K, (c, B) :=span{c, Bc,...,B""!c}

the nth Krylov subspace of c generated by ¢ € CY and the N x N matrix B.
Finally, it is always assumed that A is an N x N matrix, singular or nonsingular.

2 The three-term look-ahead Lanczos algorithm

The Lanczos process is a method that builds basis vectors for two Krylov sub-
spaces, with low work and storage requirements. Given two starting vectors, v,
and w; € CN, the algorithm computes two sequences of vectors, {v;}7.; and
{w;}}=,, such that, forn=1,2,...,

span{v;,v,,...,v,} = K, (v,, 4), @1)

span{w,,w,, ..., w,} = K, (uw;, AT).
In addition, the two sets of vectors are required to obey a biorthogonality relation.
Ideally, one would like to impose the condition

wz'vj = w}"ylL =0 forall j<n. (2.2)

This is done in the Lanczos process, as proposed by Lanczos in [7]. However, it
turns out that it is not always possible or numerically stable to construct vec-
tors satisfying (2.2), as ezact breakdowns (wlv, = 0) or near-breakdowns (wlv,
is small in some sense) may arise. This poses a problem, since the construction
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of the pair v, ; and w,; obeying (2.2) involves division by wlv,. As a rem-
edy, one relaxes the biorthogonality condition, requiring instead that, in case of
a breakdown, the relations (2.2) hold only for some range of j up to, but not
equal to, n. This leads to so-called look-ahead Lanczos algorithms, which skip
over the exact and near-breakdowns. The original QMR algorithm is based on a
look-ahead Lanczos method proposed by Freund, Gutknecht, and Nachtigal [3],
which we briefly review next.

Like the classical algorithm, the look-ahead Lanczos algorithm [3] generates
vectors {v;}7-; and {w;}}-; with (2.1). In addition, they satisfy the biorthogo-
nality relation

wTv, = D,, (2.3)

where D, is a block diagonal matrix whose structure is discussed below, and
V,:=[v; vo -+ v,] and W,:=[w;, w, --- w,].

This means that some of the vectors {v;}7_; and {w;}}_; do in fact satisfy the
full biorthogonality (2.2). These vectors are called regular, and they form a sub-
sequence {v, }i_; and {w, }_;, where

1::n1<n2<"'<nlsn<n‘+l, I:=I(n). (24)

All vectors that are not regular are called tnner. The regular vectors are used
to partition {v;}}.; and {w;}7_, into blocks. By convention, one defines blocks
V)| of size N x h;, containing the regular vector v,  and all inner vectors—if
any—between v, and v, :

VO =[v,, vy - ]

A look-ahead step is then defined in terms of building such a block. Hence the
integer [ in (2.4) is just the number of look-ahead steps taken during the first n
steps of the Lanczos algorithm. Moreover, h; is called the length of the jth look-
ahead step. The structure of the sequence {w; T=1 parallels that of the sequence
{v;}}=1, so that V,, and W, can be written as

V,=[v®D) v® ... v] and W, = (w w® ... woy,
and D, in (2.3) is given by
D, = diag(DM, D® ... DMy DU .= (w))Ty(),

The choice of whether to build a regular or an inner vector is determined at each
step, based on the particular look-ahead strategy used. It should also be pointed
out that, even though the look-ahead Lanczos algorithm can handle most break-
downs, there remains a class of breakdowns, the so-called incurable breakdowns,
which cannot be cured by look-ahead techniques. However, incurable breakdowns
occur only in very particular circumstances, and they do not pose a problem in
practice. Finally, since the scaling of the Lanczos vectors is not determined by
(2.1) and (2.3), the look-ahead algorithm scales the vectors to have unit length:

lloall = ol =1, n=1,2,.... (2.5)
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The main point of the look-ahead Lanczos process is that vectors satisfy-
ing (2.1) and (2.3) can be constructed by means of short block three-term re-
currences. These recurrences can be written compactly as

AVn = Vn+lHrU (26)
ATWn = Wn+1rg-}-1Hnrn’ (27)
where H,, is an (n + 1) x n block tridiagonal matrix,

1 if j=1,

T, = diag(7,73, .- -»n), Where 7;:= {7;'—1Pj/§js i o>, (2.8)

is a diagonal scaling matrix with positive diagonal entries, and p; and §; are scale
factors used to ensure that v; and w;, respectively, obey the scaling (2.5). Since the
recurrences used to build v,,; and w, 4, are short, the look-ahead algorithm has
low work and storage requirements, making it an attractive method for building
bases for Krylov subspaces. However, it has been observed that, in finite preci-
sion arithmetic, three-term vector recurrences are less robust than mathematically
equivalent coupled two-term recurrences. This was our motivation in proposing
in [6] a different implementation of the look-ahead Lanczos algorithm, based on
coupled two-term recurrences. Next, we review this algorithm.

3 The coupled two-term
look-ahead Lanczos process

The coupled two-term Lanczos process is an alternate way of generating the Lanc-
zos basis vectors* The algorithm generates, in addition to the Lanczos vectors
{v;}7=1 and {w;}7=;, a second set of basis vectors, {p;}}=1 and {g;}7=,, such
that, forn =1,2,...,

span{p;,Ps,---,Pn} = Kp(v;, 4),

span{QI’ 92:--» qn} = Kn(wh AT)'
For simplicity, we will sometimes refer to the Lanczos vectors {v;}7., and {w;}7-,
as the V-W sequence, and to the auxiliary vectors {p;}}-, and (q }7-1 as the P-Q

sequence. The four sets of basis vectors are generated using coupled two-term
recurrences of the form:

Vo = PU,, APn=Vn+1Lm
W, = Qnr;lUnrm ATQn = Wn+1F;ianrm

Here,
Poi=lpy P - Pal d Qui=ler & - @l

*The discussion that follows will not cover all the details and will not justify all the statements
made. For full details, we refer the reader to [6].
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while U,, is an upper triangular matrix and L, is an upper Hessenberg matrix,
given by

by bz - ln
Louyp - oy, py 1 :
. . 2 {22
U, = 0 '1 o ) and L,:= | g ps - ,
: .. .. Up_1,n . ) . |
0 --- 0 1 T S A
[0 - 0 ppyy ]

and T, is the diagonal matrix defined in (2.8). As was shown in [6], the matrices
L, and U, define a factorization of the block tridiagonal Hessenberg matrix H,,
generated by the three-term look-ahead Lanczos algorithm,

H, =L\U,. (3.1)

In addition, it is possible to reduce L, and U, to block bidiagonal matrices, by
constructing the basis vectors p, and g, so as to be block A-biorthogonal. Here,
similar to the V-W sequence, the vectors p, and ¢, are also constructed using
look-ahead techniques. For example, we again have blocks PU),

PO = [Pm,- P41 1,
where Prm,; is called regular, the other vectors in the block are called inner, and
the indices m; satisfy

l==m <my<---<m<n<my,, k:=k@n)

The regular vectors p,, = satisfy the A-biorthogonality condition

q,TApmJ. =0 forall i<my, (3.2)

while the inner vectors satisfy only a relaxed version of this condition. Once again,
the structure of Q,, parallels that of P, and the A-biorthogonality of the two sets
of basis vectors can be written as:

QT AP, = E, = diag(EW,E®,.. ,E®), EW .= (@U)TAPD.  (3.3)

Before we consider the implementation details, let us briefly discuss an outline
of the algorithm. At each iteration, the process consists of the following four basic
steps.

Algorithm 3.1. (Overview of the coupled algorithm with look-ahead)
1) Decide whether to consiruct p,, and q,, as regular or inner vectors.
2) Compute p, and g, as either regular or inner vectors.
3) Decide whether to construct v, and w, ., as regular or inner veclors.

4) Compule v, and w, ., as either regular or tnner vectors.
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Steps 1) and 3) are the basis of the look-ahead strategy, and they each consist
of three checks. Recall from (2.6) and (2.7) that the Lanczos vectors v, ; and
w, ,, can be obtained from the previous Lanczos vectors by a block three-term
recurrence. Similarly, it is possible to show that the vectors p,, and ¢, also have a
block three-term recurrence, of the form

APn-l = PnGn—l and ATQn—l = Qnr;XGn—lrn-l’ (34)
where
G,_1=U,L,_,. (3.5)
The look-ahead strategy for the two pairs of sequences is then similar, and was
first proposed in [3]. In Step 1), the algorithm checks whether:
Umin(E(k)) > eps,

n-1

r(Alpall 2 D |UnLact)ins| il (3.6)
I=my_y
n-1 v

n(Algall 2 Y2 2 |UnLaos) el (3.7
i=mE_1 '

Here, eps is machine epsilon, and n(A) is an estimate for the norm of A. The
vectors p, and g,, are built as regular vectors only if all three of the above checks
are satisfied. Likewise, in Step 3), the algorithm checks whether:

Umin(D(l)) > eps,

nA) 2 Y |(Lala),al, (38)
n(4) 2 30 (L)) (3.9)

and again, the vectors v,,,; and w,, are built as regular vectors only if all three
of the checks are passed. The motivation for these checks can be found in {3, 6].
Here, we will only note that the look-ahead strategy proposed will build regular
vectors in preference to inner vectors, and thus it will take as few look-ahead steps
as possible.

Once the decisions in Steps 1) and 3) are taken, the next vectors p, and gq,,,
and v,,; and w, 4, are built in Steps 2) and 4). For p, and ¢,, let k* denote the
number of the row of the first possible nonzero element in the nth column of U,,.
It can be shown that

F*=max{j|1<j<k and mjgmax{l,n,—l}}. (3.10)
From (3.3), both the regular and the inner vectors have the same coefficients
Um,,v. myg—-1,n given by1 .
= (diag(E(k*), E(k"+1)’ e E(k-—l)))—l

QG QU+ L. Q*-DIT Av,.

Um,‘t:mg—l,n

tWe denote z;.; = [z zig1 -+~ a:J]T.
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For the regular vectors, the coefficients U,,, ,,_; , are determined by the condi-
tion (3.2),

Umim-1,n = (B)HQW)T Av,, (3.11)
while for the inner vectors, the coefficients U, , ., , are arbitrary:

U, =(, €C, for i=my,m+1,...,n-1 (3.12)

This completes the computation of the recurrence coefficients for p, and q,, and
the vectors are then computed from

n-1
Pp =Yy — Z PiUin,

i=mk*

n-—1
gn = Wy — E qiuin(7n/7i)‘

=M«

For v,,, and w, ,,, let I* denote the number of the row of the first possible
nonzero element in the nth column of L. It can be shown that

F=max{j|1<j<!and n; <m;}. (3.13)

Again, by (2.3), both the regular and the inner vectors have the same coefficients
Ln,*:m—l,n) given by

L = (diag(D"), D" +1) ..., DU-D))-1

AW @y w017 ap_.

n«my—1,n

For the regular vectors, the coefficients L, ., , are determined by the condi-
tion (2.2),

L = (DM~"Y(WNT 4p,,, (3.14)

nyn,n
while for the inner vectors, the coefficients L, ., , are arbitrary:
l,=1,€C for i=n;,n+1,...,n (3.15)

Once the recurrence coefficients for v, ; and w,,,, are computed, the vectors are
constructed by scaling the vectors

n

Uns1 = AP, — z vilin,

i=ng«
n .
~ T
Wpypr = A 9n — Z wilin('fn/‘n))
Lt

to have umit length.
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4 Implementation details

We now turn to a detailed description of the implementation of Algorithm 3.1. If
the coupled two-term Lanczos process is run without any look-ahead steps, it will
require two inner products at each step in order to compute all the coefficients
of the recurrence formulas. Hence, the goal for the look-ahead implementation is
to also require only two inner products per step for all the recurrence coefficients.
Recall that the look-ahead strategy (3.6) and (3.7) for the P-Q sequence and
the normalization (2.5) require a total of four norm computations, so that the
implementation will require two inner products and four norms per iteration.
To begin, let us introduce the auxiliary matrices

F,:=WTAP, and F,:=QTAV,,
whose columns are needed in (3.14) and in (3.11). In addition, we will make use
of the following symmetry relations from [6]:

Dnrn = (Dﬂrﬂ)T’ (4'1)
Enrn = (Eﬂrﬂ)T’ (42)
Fn rﬂ = (Fﬂ Fﬂ )T * (4'3)

The nth iteration of the implementation will update the matrices D,_,, E,_;,
Fo vLo1wUi 1y Pty @y Vy, and W, t0 D, E,, F, L, Uy, Py, @y,

V41, and W, ,, respectively. We first list an outline of the algorithm as we have

implemented it.
Algorithm 4.1. (Coupled algorithm with look-ahead)
0) Choose vy, w; € C" with ||v,]| = ||lw ]l = 1, and compute wlv,.
Set k=1, mk=1,1='1, n, = 1.
Forn=12,..., do:
1) Update D,,_, to D,,.
2) Determine k* from (3.10):
k*=max{j|1<j<k and m; < max{l,n — 1}}.
3) Compute F, 1,,_; from (4.4) below, using L,_, and D, y.,.
Then compute F!'lm_l,n from (4.3).
4) Check whether E®) is nonsingular:
innerp = o, (E®¥)) < eps.
5) Compute the part of U, ., that is determined by biorthogonality:
= (EO)HQW)T Av,
= (B Pty i= B k=L
If innerp, go to 6). Otherwise, sel
U E®)HQE)T Av, = (B®) " Fp, i1

min-1,n = (

Um.:m,+1—1,n
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6) Build the part of p, and g, that is common lo both regular and
inner veclors:

my—1

pn = 'U" - Z pful'n’

1My

mk—l

9y = W, — Z qiuin(7n/7i)'

i=m.
If innerp, go to 11).
7) Build G, .n_1 1 and check the coefficient G, .n_1,n-1-
If innerp, go to 11).

8) Build p,, and ¢, as regular veclors:

n-1
Pn =Dn— Z DUy,

I=mj

n-1
In = n — Z qiuin(7n/7i)'

i=my
Compute Ap,, 47 APy, [|Pall, and [lg,]l.
9) Build and check the coefficient G, ,_; . If innerp, go to 11).
10) Set my .y =n, k =k +1, and go to 12).
11) Choose the inner recurrence coefficients u;,, i =my,...,n—1, and

build p, and q,, as inner vectors:

n-1
Ppn = Pn— Z Dty

i:m;,

n—-1
9n = Gn — Z 0i%in (Yn /70)-

i=m;
Compute Apy, 4z APp, |lPnll, and [lg,]l-

12) If |lpall = 0, or llgnll = O, then stop.
13) Compute A7q,,.
14) Update E, _, to E,.
15) Determine I* from (3.13):

T*::ma.x{jll_<_j§l and njgmk}.
16) Compute F., , from (4.5) below, using E,, and U,,.
17) Check whether DM is nonsingular:

innerv = o, (DP) < eps.
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18) Compute the part of L., , that is determined by biorthogonality:
= (DW=} (WO)T Ap,
= (D(‘))_an.:n.'.,,l-—l,nv

If innerv, go to 19). Otherwise, sel
= (DD WD) Ap, = (D) Fpp -

nyn;4p1—1,n
! — Pk
i=0.. -1

Lm:n,n

19) Build the part of v,y and w,, that is common to both regular and

inner veclors:

n;—1
ﬁn-ﬂl—l = Apn - Z vilifn
1=7n)«
n;—l
~ T
Wop1 = A 9n — Z wi’s’n(’fn/'yi)'
i=n«

If innerv, go lo 24).
20) Build H,,, , and check the coefficient H, _ .. n-
If innerv, go to 24).

21) Build v, and w, ., as regular vectors:
n

f)n-{-l = ﬁn-}-l - E vilin!

i=n;

n
Wy = Wpyr — Z Wilin (Yn /%)
i=n

Compute ppy1 = oy o = [[Hng1ll, &ng1 = Bapall-

If ppyy =00r &, 1 =0, then stop.

Otherwise, set Y41 = TnPps1/Ens1, and compute Wi 15,4,
22) Build and check the coefficient H,, . ,.,. If innerv, go to 24).
23) Set njyy =n+1,1=1+1, and go to 25).

24) Choose the inner recurrence coefficients l;,, i=mny,...,n, and

build v, ., and w,, as inner veclors:
n

Vng1 = Vn41 — E :vilin!

i=n,

n
Wpyy = Wpyy — Z wilin (Yn /%)

i=n;

Compute p, o, =l 41 n= ”'jn+1”’ g1 = “ﬂ.}n+1"
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If pay1 =0 o0r €, =0, then siop.
Otherwise, set Y11 = Y Pnt1/Eny1, and compute BT 15, ;.
25) Set
Upp1 = 6n+1/pn+1l Wny1 = ﬁjn+1/€n+lv
w3+1vn+1 = @I+15n+1/(Pn+1€n+1)~

Step 1. The diagonal term wlv, has already been computed directly, at the end
of the previous step. Next, using

Fn—l = WrT—lAPn—l = Wr?-IVnLn—l
= Dn—llen—l,lzn—l + In,n—lDl:n—l,n [0 0 1]?

the remainder of the last column of D, is computed from D,,_,, F,,_,,and L,_;.
The last row of D,, is obtained by symmetry, using (4.1).

Step 7. We build G,,, .,_1 n—1, Which would be the coefficient of the P(*) and
Q™) blocks in the three-term recurrences (3.4) for p, and g¢,,. Using (3.5), one has

(4.4)

n
G."n_1= E uijIj,n—l’ 1=mk,...,n—1.
j=i

The coefficient G,,, . .n, 1,1 has already been built as part of Step 9) at the
previous iteration. We then check (3.6)-(3.7), and set innerp to TRUE if at least
one of the two checks fails.

Step 9. We build G, .,_; ,, which would be the coefficient of the P} and Q%)
blocks in the three-term recurrences (3.4) for p,,, and g, . It is straightforward
to show that

G = (B9)1(QW)T A4,

myn—1n

Moreover, we have
T T
QZ—IAApn = (ATQn-l) Apn = (QnF;IUnLn—lrn—l) Apn
=T, LI _,UTT'QT Ap,
= rn—lLZ—lUr?r;l [0 - 0 qZApn ]T

7n_lln,n—l[0 -+ 0 qupn]T-

n

We then check a subset of (3.6)-(3.7), and set innerp to TRUE if at least one of
the two checks fails.

Step 14. The diagonal term ¢qf Ap,, has already been computed directly, as part
of Step 8) or Step 11). Next, using

F,=WIAP, =T,UTT;'QTAP,, (45)

the remainder of the last row of E,, is computed from E,,_y, F}.; 1.n-1, and U,,.
The last column of E,, is obtained by symmetry, using (4.2).
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Step 20. We build H,,,., ,, which would be the coefficient of the V® and w®
blocks in the three-term recurrences (2.6) and (2.7) for v, and w,, .. Using (3.1),

one has
E I‘J iny TS My, T

The coefficient H,,_ ., has already been built as part of Step 22) at the
previous iteration. We then check (3.8)-(3.9), and set innerv to TRUE if at least
one of the two checks fails.

Step 22. We build H, ., .41, Which would be the coefficient of the v and
W blocks in the three-term recurrences (2.6) and (2.7) for v, ., and w,, ;. It is
straightforward to show that

Hm:n,n-{-l = (D(I))_I(W(l))TAvni-l’
Moreover, we have
W Avyyy = (ATW,)" Avpyy = (Wi Trdi LaUaTa) v

—_ TrTr-1 T
=TV LT i Wat Ve

=T UTLITZL [0 -+ 0 wlpva,, )]
”, T

=—= In+1,n{0 - 0 wZ+1vn+1]
7n+1

We then check a subset of (3.8)-(3.9), and set innerv to TRUE if at least one of
the two checks fails.

We remark that the checks in steps 9) and 22) are actually slightly relaxed
versions of (3.8)—(3.9), and (3.6)~(3.7), respectively, since the indices checked are
only a subset of the full range appearing in (3.8)-(3.9) and (3.6)-(3.7). We also
note that the algorithm above requires minimal inputs from the user. Recall that
eps in steps 4) and 17) is machine epsilon. Furthermore, the estimate n(A) for the
norm of the matrix can be updated dynamically, as was done in [3].

The coupled Lanczos Algorithm 4.1 requires per iteration the computation of
two inner products and four vector norms. We conclude this section by noting
that, in Algorithm 4.1, the choice of the inner recurrence coefficients (3.12) and
(3.15) is arbitrary. In our implementation of the algorithm, we have used

Upin = 1,

Uyopn, =1, when m <n-2
¥, =0, for i=m;,...,n—3,
Inn L

ly_in=1. when my<n-—1,

li, =0, for i=mn;,...,n-2

for the inner vector recurrence coeflicients.
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5 The coupled two-term QMR algorithm

We now consider the quasi-minimal residual approach and briefly outline how
it can be combined with the coupled two-term look-ahead Lanczos algorithm of
Section 3 to obtain a new implementation of the QMR method. We note that the
QMR algorithm was proposed in [5] for the case of nonsingular linear systems (1.1).
It was later shown by Freund and Hochbruck [4] that the algorithm can also be
applied to singular systems, and that it always generates well-defined iterates.
However, these iterates converge to a meaningful solution only for the special case
of consistent systems with coefficient matrices A of index 1. Here, we consider
the QMR method for the general case of N x N linear systems, with singular or
nonsingular coefficient matrices.

The QMR algorithm belongs to the family of Krylov subspace methods. Let
zy € C" be an initial guess for the solution of (1.1), and ry = b — Az, the
corresponding initial residual, of length p; = ||ry||. Choosing v, = ry/p; as the
starting right Lanczos vector for Algorithm 4.1, and w, with |Jw,|| = 1 as an
arbitrary starting left Lanczos vector, one obtains the four basis sets, V,,, W,,, P,,
and Q,,, of which the ones of interest are V,, and F,, related by:

V, = P,R, and AP, =V,,,L,.

Once the basis vectors are constructed, the nth QMR iterate is selected from the
shifted Krylov subspace 4 + K, (7, A) as

zﬂ =x0+Pnyn) (51)

where y,, € C" is defined by the quasi-minimal residual condition

”fn+1 - Lnyn” = minn ”fn+1 - Lny” (52)
yeC
This is an (n + 1) x n least-squares problem, where
fapri=p (1 0O - 0]T e R™,

and we have used the normalization (2.5) of the Lanczos vectors; otherwise, the
least-squares problem above also involves a diagonal scaling matrix.
Note that, by setting
zﬂ = (Rﬂ)_lyﬂ’

and inserting in (5.2), one obtains the equivalent least-squares problem

”fn+l - Lanzn” = minn ”fn-H - Lanz”)
zeC

which is exactly the least-squares problem solved by the QMR algorithm based
on the three-term Lanczos process. Thus, the QMR iterates (5.1) are, in exact
arithmetic, identical to the iterates of the original QMR algorithm [5]. However,
as was shown in [6], in finite precision arithmetic, the coupled QMR algorithm is
more robust than the three-term recurrence version.

- Like the original QMR algorithm, the new implementation has a number of
desirable properties. Since they are equivalent, all the theoretical properties of the
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three-term recurrence QMR algorithm carry over to the coupled version. The new
method also shows a smooth and nearly monotone convergence curve. At all times
during the iteration, an upper bound for the QMR residual norm is available at
no extra cost, and, as the examples will show, this upper bound is a very good
indicator of the convergence of the method. As in the original version, the QMR
iterate has a short update formula, involving only one direction vector that can
be updated with a two-term recurrence. This is slightly cheaper than in the old
method, where the corresponding search directions for the update of the iterates
had a three-term recurrence. Finally, the new version seems to be significantly
more robust than the old version, though no theoretical results are available to
explain the differences. For a full discussion of the properties of the two QMR
algorithms, see [5, 6].

6 Numerical experiments

In this section, we present a few numerical examples with the new implementation
of the QMR algorithm. All these examples were run either on a Cray-2 at the
NASA Ames Research Center or on a Cray Y-MP at AT&T Bell Laboratories,
with a machine epsilon of about 5.0E—29.

In the plots below, we always show two curves, the computed scaled residual
norm ||r,||/|Iroll (solid line) and the residual norm upper bound (dotted line).
Recall that the upper bound is available at each step at no extra cost.

Example 6.1. This example is taken from [2]. Here we consider the differential
equation

Lu=f on (0,1)x(0,1) x (0,1), (6.1)

ij Ou i) Bu 7] du
NN e A0 DA DF i I (P Tdd
Lu == Oz (e Bz) Oy (e By) 0z (e 6z>

0 1
+50(z 4+ y+ Z)B_Z + (m - 250) u,

with Dirichlet boundary conditions u = 0. The right-hand side f was chosen so

that
u=(1-z)(1-y)(Q-2)(1-e "Y1 -e¥)(1-e77)

is the exact solution of (6.1). We discretized (6.1) using centered differences on a
40 x 40 x 40 grid with mesh size h = 1/41. This leads to a linear system of order
N = 64000 with 438400 nonzero entries. The starting vector w; was a random
vector, and the initial guess z, was zero. The example was run with a right SSOR
preconditioner [1], with w = 1.0. The algorithm stagnated at 1.6E—25 after 119
steps. For the V-W sequence, it built 4 blocks of size 2, and forced a block closure
once. For the P-Q sequence, it built 2 blocks of size 2, and forced a block closure
once.

where
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Figure 1: Convergence curves for Example 6.1.

Example 6.2. This example was provided to us by V. Venkatakrishnan [10],
from the Numerical Aerodynamic Simulation Group at the NASA Ames Research
Center. It comes from an unstructured 2-D Euler solver, and it corresponds to the
system at the beginning of time-stepping. The linear system is of order N = 62424
with 1717792 nonzero elements. The right-hand side b and the starting vector w,
were both random vectors, while the initial guess z, was zero. Once again, the
example was run with a right SSOR preconditioner, with w = 1.0. The algorithm
was stopped once it reached 1.0E—20, after 107 steps. For the V-W sequence, it
built 3 blocks of size 2, and 1 block of size 3. For the P-Q sequence, it built no
blocks, but forced a block closure once.

Example 6.3. This example was taken from [8], where McQuain and his collabo-
rators investigated the applicability of iterative methods to linear systems arising
in circuit simulation. In particular, they studied the solution of systems involving
the Jacobians that arise when a homotopy algorithm is applied to the computa-
tion of the DC operating point of a circuit. While these linear systems seem to
be rather difficult, they are not intractable. In the example, a Jacobian of order
N = 1853 with 8994 nonzero elements was considered; it is the first Jacobian from
the IS7B sequence discussed in Section 5.3 of [8]. The right-hand side b was ob-
tained by moving the last column of the original rectangular n x (n + 1) Jacobian
to the other side. The starting guess z, was zero, and the starting vector w, was
set w; = v; = b. The example was run with the variant described in [5] of Saad’s
ILUT preconditioner [9], with no additional fill-in allowed and a drop tolerance of
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Figure 2: Convergence curves for Example 6.2.

0.001, which generated a matrix L with 4766 nonzero elements, and a matrix U
with 5034 nonzero elements. The algorithm stagnated at 8.7E—23 after 67 steps.
It built no look-ahead blocks.

The examples shown illustrate several points. As already noted, the coupled
QMR algorithm has a rather smooth and almost monotone convergence behavior.
It makes available a residual norm upper bound that is a very good indicator of
the convergence of the method. Finally, while it is possible to construct examples
with arbitrary look-ahead structure, numerical experience seems to indicate that,
on the average, the look-ahead strategy does not build many look-ahead blocks.
Indeed, the vast majority of the steps taken by the coupled two-term look-ahead
Lanczos process are regular steps; furthermore, from the look-ahead steps of size
greater than 1 taken, the majority are blocks of size 2.

7 Concluding remarks

We have presented details of an implementation of a new look-ahead algorithm
for constructing Lanczos vectors based on coupled two-term recurrences instead
of the usual three-term recurrences. We then discussed a new implementation of
the quasi-minimal residual algorithm, using the coupled process to build the basis
for the Krylov subspace. While the theoretical results derived for the original
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Figure 3: Convergence curves for Example 6.3.

algorithm carry over to the new one, the latter was shown in examples to have
better numerical properties.

FORTRAN 77 codes for the coupled-two term look-ahead procedure and the
resulting new implementation of the QMR algorithm can be obtained electroni-
cally from the authors (freund@research.att.com or na.nachtigal@na-net.ornl.gov).
We note that FORTRAN 77 codes for the original implementation of QMR and
the underlying look-ahead Lanczos algorithm are available from netlib by send-
ing an email message consisting of the single line “send lalgmr from misc” to
netlib@ornl.gov or netlib@research.att.com.
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